Geospatial analysis
This article needs additional citations for verification. (July 2011) |
Geospatial analysis is an approach to applying statistical analysis and other informational techniques to geographically based data. Such analysis employs spatial software and analytical methods with terrestrial or geographic datasets, including geographic information systems and geomatics.[1][2][3]
Contents
Geographical information system usage
Geographical information systems (GIS) use geospatial analysis in a variety of contexts.
Basic applications
Geospatial analysis, using GIS, was developed for problems in the environmental and life sciences, in particular ecology, geology and epidemiology. It has extended to almost all industries including defense, intelligence, utilities, Natural Resources (i.e. Oil and Gas, Forestry etc), social sciences, medicine and Public Safety (i.e. emergency management and criminology). Spatial statistics typically result primarily from observation rather than experimentation.
Basic operations
In the case of vector-based GIS this typically means operations such as map overlay (combining two or more maps or map layers according to predefined rules), simple buffering (identifying regions of a map within a specified distance of one or more features, such as towns, roads or rivers) and similar basic operations. This reflects (and is reflected in) the use of the term spatial analysis within the Open Geospatial Consortium (OGC) “simple feature specifications”. For raster-based GIS, widely used in the environmental sciences and remote sensing, this typically means a range of actions applied to the grid cells of one or more maps (or images) often involving filtering and/or algebraic operations (map algebra). These techniques involve processing one or more raster layers according to simple rules resulting in a new map layer, for example replacing each cell value with some combination of its neighbours’ values, or computing the sum or difference of specific attribute values for each grid cell in two matching raster datasets. Descriptive statistics, such as cell counts, means, variances, maxima, minima, cumulative values, frequencies and a number of other measures and distance computations are also often included in this generic term spatial analysis. Spatial analysis includes a large variety of statistical techniques (descriptive, exploratory, and explanatory statistics) that apply to data that vary spatially and which can vary over time.
Advanced operations
Geospatial analysis goes beyond 2D mapping operations and spatial statistics. It includes:
- Surface analysis —in particular analysing the properties of physical surfaces, such as gradient, aspect and visibility, and analysing surface-like data “fields”;
- Network analysis — examining the properties of natural and man-made networks in order to understand the behaviour of flows within and around such networks; and locational analysis. GIS-based network analysis may be used to address a wide range of practical problems such as route selection and facility location (core topics in the field of operations research, and problems involving flows such as those found in hydrology and transportation research. In many instances location problems relate to networks and as such are addressed with tools designed for this purpose, but in others existing networks may have little or no relevance or may be impractical to incorporate within the modeling process. Problems that are not specifically network constrained, such as new road or pipeline routing, regional warehouse location, mobile phone mast positioning or the selection of rural community health care sites, may be effectively analysed (at least initially) without reference to existing physical networks. Locational analysis "in the plane" is also applicable where suitable network datasets are not available, or are too large or expensive to be utilised, or where the location algorithm is very complex or involves the examination or simulation of a very large number of alternative configurations.
- Geovisualization — the creation and manipulation of images, maps, diagrams, charts, 3D views and their associated tabular datasets. GIS packages increasingly provide a range of such tools, providing static or rotating views, draping images over 2.5D surface representations, providing animations and fly-throughs, dynamic linking and brushing and spatio-temporal visualisations. This latter class of tools is the least developed, reflecting in part the limited range of suitable compatible datasets and the limited set of analytical methods available, although this picture is changing rapidly. All these facilities augment the core tools utilised in spatial analysis throughout the analytical process (exploration of data, identification of patterns and relationships, construction of models, and communication of results)
References
- ↑ Collins English Dictionary - Complete & Unabridged 10th Edition 2009 © William Collins Sons & Co. Ltd. 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009 http://dictionary.reference.com/browse/geospatial
- ↑ Dictionary.com's 21st Century Lexicon Copyright © 2003-2010 Dictionary.com, LLC http://dictionary.reference.com/browse/geospatial
- ↑ The geospatial web – blending physical and virtual spaces., Arno Scharl in receiver magazine, Autumn 2008
External links
This article's use of external links may not follow Wikipedia's policies or guidelines. (July 2011) |
- Management Association for Private Photogrammetric Surveyors (MAPPS), the national association of private geospatial firms
- International Cartographic Association (ICA), the world body for mapping and GIScience professionals
- Cartography and Geographic Information Society (CaGIS)
- American Society for Photogrammetry & Remote Sensing (ASPRS), the Imaging & Geospatial Information Society
- Association of American Geographers (AAG), Spatial Analysis Special Interest Group
- Association for Geographic Information (AGI)
- Centre for Advanced Spatial Analysis (CASA)
- Centre for Spatially Integrated Social Science (CSISS)
- STARS Entry-Level Geospatial Certification
- Centre for Computational Geography
- DGI - European Geospatial Intelligence Conference
- European Commission Joint Research Centre (CEC/JRC) Geostatistics Unit
- EURO Working Group on Locational Analysis
- Free GIS Organization – portal and mailing list
- Geoscience Australia
- Geospatial Art by Nikolas Schiller
- Geospatial Information & Technology Association
- International Association for Mathematical Geology (IAMG)
- Joint Board of Geospatial Information Societies (JB GIS)
- Market Research Society, Geodemographics Knowledgebase
- NCGIA Core curriculum
- National Geospatial-Intelligence Agency (NGA) [1]
- Open Geospatial Consortium (OGC): [2]
- Open Source Geospatial Foundation: [3]
- Royal Geographical Society/Institute of British Geographers: GIS in Teaching
- Spatial Analysis Laboratory, University of Thessaly, Greece
- SPLINT: Spatial Literacy in Teaching
- Topologically Integrated Geographic Encoding and Referencing (TIGER): U.S. Census Bureau
- University Consortium for Geographic Information Science (UCGIS): [4]
- United States Geological Survey (USGS): [5]
- USGS Spatial Data Transfer Standard
- US National Research Council of the National Academies [6]
- US Army Topograhic Engineering Center
- US Geospatial Intelligence Foundation [7]es:Geomática
fr:Géomatique it:Geomatica pt:Geomática fi:Geomatiikka sv:Geospatial