File:Pitot tube types.svg
Types of pitot tubes
File:Airspeed p1230157.jpg
Aircraft use pitot tubes to measure airspeed. The example in this photo combines a pitot tube with a static port and an angle-of-attack vane. Air flow relative to this device is right to left. The pitot is the pencil point shape and the vane is black.

A pitot (11px /ˈpt/) tube is a pressure measurement instrument used to measure fluid flow velocity. The pitot tube was invented by the French engineer Henri Pitot in the early 18th century[1] and was modified to its modern form in the mid-19th century by French scientist Henry Darcy.[2] It is widely used to determine the airspeed of an aircraft and to measure air and gas velocities in industrial applications. The pitot tube is used to measure the local velocity at a given point in the flow stream and not the average velocity in the pipe or conduit.[3]

Theory of operation

The basic pitot tube consists of a tube pointing directly into the fluid flow. As this tube contains fluid, a pressure can be measured; the moving fluid is brought to rest (stagnates) as there is no outlet to allow flow to continue. This pressure is the stagnation pressure of the fluid, also known as the total pressure or (particularly in aviation) the pitot pressure.

The measured stagnation pressure cannot of itself be used to determine the fluid velocity (airspeed in aviation). However, Bernoulli's equation states:

Stagnation pressure = static pressure + dynamic pressure

Which can also be written

\[p_t = p_s + \left(\frac{\rho V^2}{2}\right)\]

Solving that for velocity we get:

\[V = \sqrt{\frac{2 (p_t - p_s)}{\rho}}\]

Note: The above equation applies only to incompressible fluid.

where:

  • \(V\) is fluid velocity;
  • \(p_t\) is stagnation or total pressure;
  • \(p_s\) is static pressure;
  • and \(\rho\) is fluid density.

The value for the pressure drop \(p_2\) – \(p_1\) or Δp due to Δh, the reading on the manometer:

Δp = \(\rho \) g Δh

Where:

  • \(\rho\) is the density of the fluid in the manometer
  • Δh is the manometer reading

The dynamic pressure, then, is the difference between the stagnation pressure and the static pressure. The static pressure is generally measured using the static ports on the side of the fuselage. The dynamic pressure is then determined using a diaphragm inside an enclosed container. If the air on one side of the diaphragm is at the static pressure, and the other at the stagnation pressure, then the deflection of the diaphragm is proportional to the dynamic pressure, which can then be used to determine the indicated airspeed of the aircraft. The diaphragm arrangement is typically contained within the airspeed indicator, which converts the dynamic pressure to an airspeed reading by means of mechanical levers.

Instead of separate pitot and static ports, a pitot-static tube (also called a Prandtl tube) may be employed, which has a second tube coaxial with the pitot tube with holes on the sides, outside the direct airflow, to measure the static pressure.[4]

Operation

Pitot tubes on aircraft commonly have heating elements called pitot heat to prevent the tube from becoming clogged with ice. The failure of these systems can have catastrophic consequences, as in the case of Austral Líneas Aéreas Flight 2553, Birgenair Flight 301 (investigators suspected that some kind of insect could have created a nest inside the pitot tube: the prime suspect is a species called the black and yellow mud dauber wasp), Northwest Airlines Flight 6231, AeroPeru Flight 603 (blocked static port), and of one X-31.[5] It has also been suggested that pitot tube icing may have been a contributing factor for the crash of Air France Flight 447[6] although this claim has been contested.[7]

Industry applications

File:FA18pitot.png
Pitot tube from a F/A-18

In industry, the velocities being measured are often those flowing in ducts and tubing where measurements by an anemometer would be difficult to obtain. In these kinds of measurements, the most practical instrument to use is the pitot tube. The pitot tube can be inserted through a small hole in the duct with the pitot connected to a U-tube water gauge or some other differential pressure gauge (alnor) for determining the velocity inside the ducted wind tunnel. One use of this technique is to determine the amount of cooling that is being delivered to a room.

The fluid flow rate in a duct can then be estimated from:

Volume flow rate (cubic feet per minute) = duct area (square feet) × velocity (feet per minute)
Volume flow rate (cubic meters per second) = duct area (square meters) × velocity (meters per second)

In aviation, airspeed is typically measured in knots.

See also

References

Notes
  • Script error
  • Script error
  • Script error
  • Script error
</dl>

External links

ar:أنبوب بيتو ca:Tub de Pitot cs:Pitotova trubice da:Pitotrør de:Pitotrohr es:Tubo Pitot fa:لوله پیتو fr:Tube de Pitot ko:피토 튜브 hr:Pitot-cijev it:Tubo di Pitot he:צינור פיטו lb:Pitotrouer hu:Pitot-cső nl:Pitotbuis ja:ピトー管 no:Pitotrør pl:Rurka Pitota pt:Tubo de Pitot ru:Трубка Пито sl:Pitot-Prandtlova cev fi:Pitot-putki sv:Pitot-rör uk:Трубка Піто