Instrumental and Laboratory Techniques for Wettability
Wettability of the pore surface is one of the important factors influencing the distribution and transport of various fluid phases and therefore the extent of formation damage in petroleum-bearing formations. Because the wettability of rocks is altered by the rock and fluid interactions and variations of the reservoir fluid conditions, prediction of its effects on formation damage is a highly complicated issue.
Although mineral matters forming the reservoir rocks are generally water-wet, deposition of heavy organic matter, such as asphaltenes and paraffines, over a long reservoir lifetime may render them mixed-wet or oil-wet, depending on the composition of the oil and reservoir conditions. Wettability may be expressed by various means, including the Amott and USBM indices. During reservoir exploitation, wettability may vary by various reasons.
For example, Burchfield and Bryant (1988) is an evidence of the alteration of the wettability of a water-wet berea sandstone to a stronger water-wet state in contact with microbial solutions. Madden and Strycker (1988) determined that the wettability of the Berea sandstone saturated with oils vary by their asphaltene and polar components content and temperature. Madden and Strycker (1988) depicts the shifting of the wettability curves by temperature.
References
1 Ali, L., & Barrufet, M. A., "Study of Pore Structure Modification Using Environmental Scanning Electron Microscopy," Journal of Petroleum Science and Engineering, Vol. 12, 1995, pp. 323-338.
2 Amaefule, J. O., Kersey, D. G., Norman, D. L., & Shannon, P. M., "Advances in Formation Damage Assessment and Control Strategies," CIM Paper No. 88-39-65, Proceedings of the 39th Annual Technical Meeting of Petroleum Society of CIM and Canadian Gas Processors Association, Calgary, Alberta, June 12-16, 1988, 16 p.
3 Appel, M., Stallmach, R, & Thomann, H., "Irreducible Fluid Saturation Determined by Pulsed Field Gradient NMR, Journal of Petroleum Science and Engineering, Vol. 19, 1998, pp. 45-54.
4 Arcia, E. M., & Civan, F., "Characterization of Formation Damage by Particulate Processes," Journal of Canadian Petroleum Technology, Vol. 31, No. 3, 1992, pp. 27-33.
5 Braun, G., & Boles, J. L., "Characterization and Removal of Amorphous Aluminosilicate Scales," SPE 24068 paper, Proceedings of the SPE Western Regional Meeting, Bakersfield, California, March 30-April 1, 1982, pp. 389-398.
6 Burchfield, T. E., & Bryant, R. S., "Development of MEOR Processes for Use in Field Applications," 1988 Annual Report, Work Performed Under Cooperative Agreement No. FC22-83FE60149, for the U.S. Department of Energy, Bartlesville Project Office, Bartlesville, Oklahoma, September 1989, pp. 69-73.
7 Chakrabarty, T., & Longo, J. M., "A New Method for Mineral Quantification to Aid in Hydrocarbon Exploration and Exploitation," Journal of Canadian Petroleum Technology, Vol. 36, No. 11, pp. 15-21.
8 Coles, M. E., Hazlett, R. D., Spanne, P., Soil, W. E., Muegge, E. L., & Jones, K. W., "Pore Level Imaging of Fluid Transport Using Synchrotron X-Ray Microtomography," Journal of Petroleum Science and Engineering, Vol. 19, 1998, pp. 55-63.
9 Coskun, S. B., & Wardlaw, N. C., "Estimation of Permeability from Image Analysis of Reservoir Sandstones—Image analysis for estimating ultimate oil recovery efficiency by waterflooding for two sandstone reservoirs," Journal of Petroleum Science and Engineering, Vol. 10, 1993, pp. 1-16, Vol. 15, 1996, pp. 237-250.
10 Cuiec, L., & Robin, M., "Two SEM Techniques to Investigate Reservoir-Rock Wettability," Journal of Petroleum Technology, November 1998, pp. 77-79.
11 Doublet, L. E., Pande, P. K., Clark, M. B., Nevans, J. W., Vessell, R., & Blasingame, T. A., SPE 29594 paper, Proceedings of the 1995 SPE Joint Rocky Mountain and Low Permeability Reservoirs Symposium, Denver, Colorado, March 19-22, 1995, pp. 13-38.
12 Doublet, L. E., Pande, P. K., Clark, M. B., Nevans, J. W., Vessell, R., & Blasingame, T. A., SPE 29594 paper, Proceedings of the 1995 SPE Joint Rocky Mountain and Low Permeability Reservoirs Symposium, Denver, Colorado, March 19-22, 1995, pp. 13-38.
13 Durand, C., & Rosenberg, E., "Fluid Distribution in Kaolinite- or Illite-Bearing Cores: Cryo-SEM Observations Versus Bulk Measurements," Journal of Petroleum Science and Engineering, Vol. 19, Nos. 1/2, 1998, pp. 65-72.
14 Ehrlich, R., Prince, C., & Carr, M. B., "Sandstone Reservoir Assessment and Production is Fundamentally Affected by Properties of a Characteristic Porous Microfabric," SPE 38712 paper, Proceedings of the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, October 5-8, 1997, pp. 591-599.
15 Fordham, E. J., Horsfield, M. A., Hall, L. D., & Maitland, G. C., "Depth Filtration of Clay in Rock Cores Observed by One-Dimensional ]H NMR Imaging," Journal of Colloid and Interface Science, Vol. 156, 1993, pp. 253-255.
16 Gunter, G. W., Pinch, J. J., Finneran, J. M., & Bryant, W. T., "Overview of an Integrated Process Model to Develop Petrophysical Based Reservoir Description," SPE 38748 paper, Proceedings of the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, October 5-8, 1997, pp. 475-479.
17 Hayatdavoudi, A., "Changing Chemophysical Properties of Formation and Drilling Fluid Enhances Penetration Rate and Bit Life," SPE 50729 paper, Proceedings of the 1999 SPE International Symposium on Oilfield Chemistry, Houston, Texas, February 16-19, 1999, pp. 273-285.
18 Hicks Jr., P. J., "X-Ray Computer-Assisted Tomography for Laboratory Core Studies," Journal of Petroleum Technology, December 1996, pp. 1120-1122.
19 loannidis, M. A., Kwiecien, M. J., & Chatzis, I., "Statistical Analysis of the Porous Microstructure as a Method of Estimating Reservoir Permeability," Journal of Petroleum Science and Engineering, Vol. 16, 1996, pp. 251-261.
20 Johnson, P. R., "A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the £ Potential of Granular Porous Media Surfaces," Journal of Colloid and Interface Science, Vol. 209, 1999, pp. 264-267.
21 Kelkar, M., "Introduction to Geostatistics," tutorial paper, presented at the 1991 International Reservoir Characterization Conference, Tulsa, Oklahoma.
22 Kelkar, M., Applied Geostatistics for Reservoir Characterization, draft, University of Tulsa, Tulsa, Oklahoma, 1993.
23 Kersey, D. G., "The Role of Petrographic Analysis in the Design of Nondamaging Drilling, Completion, and Stimulation Programs," SPE 14089 paper, presented at the 1986 SPE Intl. Meeting on Petroleum Engineering, Beijing, March 17-20.
24 Khilar, K. C., & Fogler, H. S., "Colloidally Induced Fines Migration in Porous Media," in Amundson, N. R., & Luss, D. (Eds.), Reviews in Chemical Engineering, Freund Publishing House LTD., London, England, January-June 1987, Vol. 4, Nos. 1 and 2, pp. 41-108.
25 Khilar, K. C., & Fogler, H. S., "Water Sensitivity of Sandstones," SPEJ, pp. 55-64, February 1983.
26 Kleven, R., & Alstad, J., "Interaction of Alkali, Alkaline-Earth and Sulphate Ions with Clay Minerals and Sedimentary Rocks," Journal of Petroleum Science and Engineering, Vol. 15, 1996, pp. 181-200.
27 Madden, M. P., & Strycker, A. R., "Thermal Processes for Light Oil Recovery," 1988 Annual Report, Work Performed Under Cooperative Agreement No. FC22-83FE60149, for the U.S. Department of Energy, Bartlesville Project Office, Bartlesville, Oklahoma, September 1989, pp. 205-218.
28 Muecke, T. W., "Formation Fines and Factors Controlling their Movement in Porous Media," JPT, pp. 147-150, Feb. 1979.
29 Oyno, L., Tjetland, B. C., Esbensen, K. H., Solberg, R., Scheie, A., & Larsen, T., "Prediction of Petrophysical Parameters Based on Digital Video Core Images," SPE Reservoir Evaluation and Engineering, February 1998, pp. 82-87.
30 Rhodes, C. N., & Brown, D. R., "Rapid Determination of the Cation Exchange Capacity of Clays Using Co(II)," Clay Minerals Journal, Vol. 29, 1994, pp. 799-801.
31 Rink, M., & Schopper, J. R., "On the Application of Image Analysis to Formation Evaluation," The Log Analyst, January-February 1978, pp. 12-22.
32 Rueslatten, H., Eidesmo, T., Lehne, K. A., & Relling, O. M., "The Use of NMR Spectroscopy to Validate NMR Logs from Deeply Buried Reservoir Sandstones," Journal of Petroleum Science and Engineering, Vol. 19, 1998, pp. 33-43.
33 Saner, S., Al-Harthi, A., & Htay, M. T., "Use of Tortuosity for Discriminating Electro-Facies to Interpret the Electrical Parameters of Carbonate Reservoir Rocks," Journal of Petroleum Science and Engineering, Vol. 16, 1996, pp. 237-249.
34 Scott Jr., T. E., Zaman, M. M., & Roegiers, J-C., "Acoustic-Velocity Signatures Associated with Rock-Deformation Processes," Journal of Petroleum Technology, June 1998, pp. 70-74.
35 Sharma, M. M., "Transport of Particulate Suspensions in Porous Media," Ph.D. Dissertation, University of Southern California, 1985, 342 p.
36 Skopec, R.A., "Recent Advances in Rock Characterization," The Log Analyst, May-June 1992, pp. 270-284.
37 Tamura, H., Tanaka, A., Mita, K-Y., & Furuichi, R., "Surface Hydroxyl Site Densities on Metal Oxides as a Measure for the Ion-Exchange Capacity," Journal of Colloid and Interface Science, Vol. 209, 1999, pp. 225-231.
38 Tremblay, B., Sedgwick, G., & Vu, D., "CT-Imaging of Wormhole Growth Under Solution-Gas Drive," SPE 39638 paper, Proceedings of the 1998 SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 19-22, 1998, pp. 367-382.
39 Unalmiser, S., & Funk, J. J., "Engineering Core Analysis," Journal of Petroleum Technology, April 1998, pp. 106-114.
40 Weber, K. J., "How Heterogeneity Affects Oil Recovery," in Reservoir Characterization, L. W. Lake & H. B. Carroll, Jr. (eds.), Academic Press, Inc., Orlando, Florida, 1986, pp. 487-544.
41 Wellington, S. L., & Vinegar, H. J., "X-Ray Computerized Tomography," Journal of Petroleum Technology, August 1987, pp. 885-898.
42 Xiao, L., Piatti, C., Giacca, D., Nicula, S., & Gallino, G., "Studies on the Damage Induced by Drilling Fluids in Limestone Cores," SPE 50711 paper, Proceedings of the 1999 SPE International Symposium on Oilfield Chemistry, Houston, Texas, February 16-19, 1999, pp. 105-117.