Incorporating the effects of fine particles deposition according to Arshad (1991) and cake compaction according to Tien et al. (1997), Civan (1998a) estimates the cake-thickness-average porosity by the following constitutive equation:

Considering the fine particles deposition and cake compaction, Civan (1998a) estimates the cake-thickness-average permeability by the Tien et al. (1997) constitutive equation:

In Eqs. 12-142 and 143, ɸ)° and k°c represent the fine particles-free and non-compacted cake porosity and permeability; respectively, α, n, Ρa, β, a1, a2, and ẟ are the empirically determined parameters.


Thickness-Averaged Fluid Pressure and Cake Porosity

The average fluid pressure in the filter cake for linear filtration can be expressed similar to Dake (1978) as:

The following expression can be derived from Eqs. 12-144 and 12-145:


Note xw is a constant, but xc = xc(t) varies by time. Similarly, the following three expressions can be written for radial flow:


Eq. 12-147 is given by Dake (1978). Note that rw is a constant, but rc = rc(t) varies by time. Eqs. 12-146 and 149 define the average fluid pressure, but they cannot be used directly because the pressure distribution over the cake thickness is not a priori known. Civan (1998b, 1999b) circumvented this problem by applying a procedure similar to Jones and Roszelle (1978) to express a local function value in terms of its average. The local cake porosity at the slurry side of the cake can be expressed in terms of the cake-thickness-average porosity. For linear filtration Civan (1998b) differentiated Eq. 12-145 to obtain:


Similar to Tiller and Crump (1985), the cake-thickness-average drag force, ps, created by the flow of the suspension of fine particles through the filter cake is determined using


in which Pc is the pressure of the slurry applying at the progressing filter cake surface and p is the cake-thickness-average pressure of the uspension of fine particles flowing through the cake. For linear filtration, Pc and p can be related by differentiating Eq. 12-146 and then substituting Eq. 12-150 to obtain (Civan, 1998b):



For computational convenience, Eq. 12-153 can be reformulated in a form of an ordinary differential equation as (Civan, 1999b):



Differentiating Eq. 12-149 and then substituting Eq. 12-151 for radial flow, Eqs. 12-153 and 12-154 are replaced, respectively, by (Civan, 1998b):



Eqs. 12-154 or 12-156 can be solved numerically subject to the initial condition



References

Abboud, N. M., "Formation of Filter Cakes with Particle Penetration at the Filter Septum," Paniculate Science and Technology, Vol. 11, 1993, pp. 115-131.

Adin, A., "Prediction of Granular Water Filter Performance for Optimum Design," Filtration and Separation, Vol. 15, No. 1, 1978, pp. 55-60.

Arshad, S. A., "A Study of Surfactant Precipitation in Porous Media with Applications in Surfactant-Assisted Enhanced Oil Recovery Processes," Ph.D. Dissertation, University of Oklahoma, 1991, 285 p.

Chase, G. G., & Willis, M. S., "Compressive Cake Filtration," Chem. Engng. ScL, Vol. 47, No. 6, 1992, pp. 1373-1381.

Chen, W., "Solid-Liquid Separation via Filtration," Chemical Engineering, Vol. 104, February 1997, pp. 66-72.

Civan, F., "A Multi-Phase Mud Filtrate Invasion and WellBore Filter Cake Formation Model," SPE 28709 paper, Proceedings of the SPE International Petroleum Conference & Exhibition of Mexico, Veracruz, Mexico, October 10-13, 1994, pp. 399-412.

Civan, F., "A Multi-Purpose Formation Damage Model," SPE 31101 paper, Proceedings of the SPE Formation Damage Control Symposium held in Lafayette, Louisiana, February 14-15, 1996, pp. 311-326.

Civan, F, "Incompressive Cake Filtration: Mechanism, Parameters, and Modeling," AIChE J., Vol. 44, No. 11, November 1998a, pp. 2379-2387.

Civan, F., "Practical Model for Compressive Cake Filtration Including Fine Particle Invasion," AIChE J., Vol. 44, No. 11, November 1998b, pp. 2388-2398.

Civan, F., "Predictive Model for Filter Cake Buildup and Filtrate Invasion with Non-Darcy Effects," SPE 52149 paper, Proceedings of the 1999 SPE Mid-Continent Operations Symposium held in Oklahoma City, Oklahoma, March 28-31, 1999a.

Civan, F., "Phenomenological Filtration Model for Highly Compressible Filter Cakes Involving Non-Darcy Flow," SPE 52147 paper, Proceedings of the 1999 SPE Mid-Continent Operations Symposium held in Oklahoma City, Oklahoma, March 28-31, 1999b.

Clark, P. E., & Barbat, O., "The Analysis of Fluid-Loss Data," SPE 18971 paper, Proc., SPE Joint Rocky Mountain Regional/Low Permeability Reservoirs Symposium and Exhibition, Denver, Colorado, March 6-8, 1989, pp. 437-444.

Collins, E. R., Flow of Fluids Through Porous Materials, Penn Well Publishing Co., Tulsa, Oklahoma, 1961, 270 p.

Corapcioglu, M. Y., & Abboud, N. M., "Cake Filtration with Particle Penetration at the Cake Surface," SPE Reservoir Engineering, Vol. 5, No. 3, August 1990, pp. 317-326.

Dake, L. P., Fundamentals of Reservoir Engineering, Elsevier Scientific Publishing Co., New York, 1978, 443 p.

Darcy, H., "Les Fontaines Publiques de la Ville de Dijon," Dalmount, Paris (1856).

Darley, H. C. H., "Prevention of Productivity Impairment by Mud Solids," Petroleum Engineer, September 1975, pp. 102-110.

de Nevers, N., "Product in the Way Processes," Chemical Engineering Education, Summer 1992, pp. 146-151.

Donaldson, E. C., & Chernoglazov, V, "Drilling Mud Fluid Invasion Model," J. Pet. Sci. Eng., Vol. 1, No. 1, 1987, pp. 3-13.

Fehlberg, E., "Low-Order Classical Runge-Kutta Formulas with Stepsize Control and their Application to Some Heat Transfer Problems," NASA TR R-315, Huntsville, Alabama, July 1969.

Fisk, J. V., Shaffer, S. S., & Helmy, S., "The Use of Filtration Theory in Developing a Mechanism for Filter-Cake Deposition by Drilling Fluids in Laminar Flow," SPE Drilling Engineering, Vol. 6, No. 3, September 1991, pp. 196-202.

Forchheimer, P., "Wasserbewegung durch Boden," Zeitz. ver. Deutsch Ing. Vol. 45, 1901, pp. 1782-1788.

Hermia, J., "Constant Pressure Blocking Filtration Laws—Application to Power-Law Non-Newtonian Fluids," Trans. IChemE, Vol. 60, 1982, pp. 183-187.

Jiao, D., & Sharma, M. M., "Mechanism of Cake Buildup in Crossflow Filtration of Colloidal Suspensions," J. Colloid and Interface Sci., Vol. 162, 1994, pp. 454-462.

Jones, S. C., & Roszelle, W. O., "Graphical Techniques for Determining Relative Permeability from Displacement Experiments," Journal of Petroleum Technology, Trans AIM E, Vol. 265, 1978, pp. 807-817.

Liu, X., & Civan, F, "Formation Damage and Filter Cake Buildup in Laboratory Core Tests: Modeling and Model-Assisted Analysis," SPE Formation Evaluation J., Vol. 11, No. 1, March 1996, pp. 26-30.

Liu, X., Civan, F, and Evans, R. D., "Correlation of the Non-Darcy Flow Coefficient," Journal of Canadian Petroleum Technology, Vol. 34, No. 10, December 1995, pp. 50-54.

Metzner, A. B., & Reed, J. C., "Flow of Non-Newtonian Fluids—Correlation of the Laminar, Transition, and Turbulent Flow Regions," AIChE J., Vol. 1, No. 4, 1955, pp. 434-440.

Peng, S. J., & Peden, J. M., "Prediction of Filtration Under Dynamic Conditions," SPE 23824 paper, presented at the SPE Intl. Symposium on Formation Damage Control held in Lafayette, Louisiana, February 26- 27, 1992, pp. 503-510.

Potanin, A. A., & Uriev, N. B., "Micro-rheological Models of Aggregated Suspensions in Shear Flow," /. Coll. Int. ScL, Vol. 142, No. 2, 1991, pp. 385-395.

Ravi, K. M, Beirute, R. M., & Covington, R. L., "Erodability of Partially Dehydrated Gelled Drilling Fluid and Filter Cake," SPE 24571 paper, Proceedings of the 67th Annual Technical Conference and Exhibition of the SPE held in Washington, DC, October 4-7, 1992, pp. 219-234.

Sherman, N. E., & Sherwood, J. D., "Cross-Flow Filtration: Cakes With Variable Resistance and Capture Efficiency," Chemical Engineering Science, Vol. 48, No. 16, 1993, pp. 2913-2918.

Smiles, D. E., & Kirby, J. M., "Compressive Cake Filtration—A Comment," Chem. Engng. ScL, Vol. 48, No. 19, 1993, pp. 3431-3434.

Tien, C., Bai, R., & Ramarao, B. V., "Analysis of Cake Growth in Cake Filtration: Effect of Fine Particle Retention, AIChE J., Vol. 43, No. 1, January 1997 pp. 33-44.

Tiller, F. M., & Crump, J. R., "Recent Advances in Compressible Cake Filtration Theory," in Mathematical Models and Design Methods in Solid-Liquid Separation, A. Rushton, ed., Martinus Nijhoff, Dordrecht, 1985.

Willis, M. S., Collins, R. M., & Bridges, W. G., "Complete Analysis of Non-Parabolic Filtration Behavior," Chem. Eng. Res. Des., Vol. 61, March 1983, pp. 96-109.

Xie, X., & Charles, D. D., "New Concepts in Dynamic Fluid-Loss Modeling of Fracturing Fluids," J. Petroleum Science and Engineering, Vol. 17, No. 1/2, February 1997, pp. 29-40.