An Archimedes number \(\mathrm{Ar}\) (not to be confused with Archimedes' constant, π), named after the ancient Greek scientist Archimedes—used to determine the motion of fluids due to density differences—is a dimensionless number in the form:

\[{\rm Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2}\]

where:

  • g = gravitational acceleration (9.81 m/s²),
  • ρl = density of the fluid, \(kg/m^3\)
  • ρ = density of the body, \(kg/m^3\)
  • \(\mu\) = dynamic viscosity, \(kg/m s\)
  • L = characteristic length of body, m

When analyzing potentially mixed convection of a liquid, the Archimedes number parametrizes the relative strength of free and forced convection by representing the ratio of Grashof number and the square of Reynolds number. This represents the ratio of buoyancy and inertial forces, which stands in for the contribution of natural convection. When Ar >> 1, natural convection dominates and when Ar << 1, forced convection dominates. \[ Ar= \frac{Gr}{Re^2} \] [1]

See also

References

  1. Script error
ar:عدد أرخميدس

be:Лік Архімеда bg:Архимедово число bs:Arhimedov broj ca:Nombre d'Arquimedes de:Archimedes-Zahl es:Número de Arquímedes eo:Arkimeda nombro fa:عدد ارشمیدس fr:Nombre d'Archimède hi:आर्कमिडीज़ संख्या it:Numero di Archimede nl:Getal van Archimedes km:ចំនួនអាកស៊ីម៉ែដ pl:Liczba Archimedesa ru:Число Архимеда sr:Архимедов број uk:Число Архімеда zh:阿基米德数