Schmidt number is a dimensionless number defined as the ratio of momentum diffusivity (viscosity) and mass diffusivity, and is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after the German engineer Ernst Heinrich Wilhelm Schmidt (1892-1975).

Schmidt number is the ratio of the rana shear component for diffusivity viscosity/density to the diffusivity for mass transfer D. It physically relates the relative thickness of the hydrodynamic layer and mass-transfer boundary layer.

It is defined[1] as: \[\mathit{Sc} = \frac{\nu}{D} = \frac {\mu} {\rho D} = \frac{ \mbox{viscous diffusion rate} }{ \mbox{molecular (mass) diffusion rate} }\]

where:

The heat transfer analog of the Schmidt number is the Prandtl number.

Stirling engines

For Stirling engines, the Schmidt number represents dimensionless specific power. Gustav Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 for the now-famous closed-form solution for an idealized isothermal Stirling engine model.[2][3]

\[ Sc = \frac{\sum {\left | {Q} \right |}}{\bar p V_{sw}}\]

where,

  • \(Sc\) is the Schmidt number
  • \(Q\) is the heat transferred into the working fluid
  • \(\bar p\) is the mean pressure of the working fluid
  • \(V_{sw}\) is the volume swept by the piston.

Notes

  1. Incropera, Frank P.; DeWitt, David P. (1990), Fundamentals of Heat and Mass Transfer (3rd ed.), John Wiley & Sons, pp. p. 345, ISBN 0-471-51729-1 Eq. 6.71.
  2. Schmidt Analysis (updated 12/05/07)
  3. http://mac6.ma.psu.edu/stirling/simulations/isothermal/schmidt.html


ar:عدد شميت ca:Nombre de Schmidt de:Schmidt-Zahl es:Número de Schmidt fa:عدد اشمیت fr:Nombre de Schmidt gl:Número de Schmidt hi:श्मिट संख्या it:Numero di Schmidt nl:Getal van Schmidt ja:シュミット数 pt:Número de Schmidt ru:Число Шмидта uk:Число Шмідта zh:施密特數