The Prandtl number \(\mathrm{Pr}\) is a dimensionless number; the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. It is named after the German physicist Ludwig Prandtl.

It is defined as: \[\mathrm{Pr} = \frac{\nu}{\alpha} = \frac{\mbox{viscous diffusion rate}}{\mbox{thermal diffusion rate}} = \frac{C_p \mu}{k}\]

where:

Note that whereas the Reynolds number and Grashof number are subscripted with a length scale variable, the Prandtl number contains no such length scale in its definition and is dependent only on the fluid and the fluid state. As such, the Prandtl number is often found in property tables alongside other properties such as viscosity and thermal conductivity.

Typical values for \(\mathrm{Pr}\) are:

(Low \(\mathrm{Pr}\) - conductive transfer strong)

(High \(\mathrm{Pr}\) - convective transfer strong)

For mercury, heat conduction is very effective compared to convection: thermal diffusivity is dominant. For engine oil, convection is very effective in transferring energy from an area, compared to pure conduction: momentum diffusivity is dominant.

In heat transfer problems, the Prandtl number controls the relative thickness of the momentum and thermal boundary layers. When Pr is small, it means that the heat diffuses very quickly compared to the velocity (momentum). This means that for liquid metals the thickness of the thermal boundary layer is much bigger than the velocity boundary layer.

The mass transfer analog of the Prandtl number is the Schmidt number.

See also

References

  • Script error
ar:عدد برانتل

ca:Nombre de Prandtl cs:Prandtlovo číslo de:Prandtl-Zahl es:Número de Prandtl eu:Prandtl zenbakia fa:عدد پرنتل fr:Nombre de Prandtl gl:Número de Prandtl ko:프란틀 수 hi:प्रांटल संख्या it:Numero di Prandtl nl:Getal van Prandtl ja:プラントル数 pl:Liczba Prandtla pt:Número de Prandtl ru:Число Прандтля sk:Prandtlovo číslo fi:Prandtlin luku th:เลขพรันด์เทิล tr:Prandtl sayısı uk:Число Прандтля zh:普兰特数